Hyaluronan fragments/CD44 mediate oxidative stress-induced MUC5B up-regulation in airway epithelium.

نویسندگان

  • S Marina Casalino-Matsuda
  • Maria E Monzon
  • Anthony J Day
  • Rosanna M Forteza
چکیده

Mucus hypersecretion with elevated MUC5B mucin production is a pathologic feature in many airway diseases associated with oxidative stress. In the present work, we evaluated MUC5B expression in airways and in primary cultures of normal human bronchial epithelial (NHBE) cells, as well as the mechanisms involved in its regulation. We found that oxidative stress generated by cigarette smoke or reactive oxygen species (ROS) induces MUC5B up-regulation in airway epithelium from smokers and in NHBE cells, respectively. We have previously shown that ROS-induced MUC5AC expression in NHBE cells is dependent on hyaluronan depolymerization and epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) activation. Since hyaluronan fragments can activate MAPK through the hyaluronan receptor CD44, and CD44 heterodimerizes with EGFR, we tested whether ROS and/or hyaluronan fragments induce MUC5B mRNA and protein expression through CD44/EGFR. We found that ROS promotes CD44/EGFR interaction, EGFR/MAPK activation, and MUC5B up-regulation that are prevented by blocking CD44 and/or EGFR. These results were mimicked by hyaluronan fragments. In summary, our results show that oxidative stress in vivo (cigarette smoke) or in vitro (ROS) induces MUC5B up-regulation. This ROS-induced MUC5B expression requires CD44 as well as EGFR and MAPK activation. In addition, we also provide evidence that hyaluronan fragments are sufficient to induce CD44/EGFR interaction and downstream signaling that results in MUC5B up-regulation, suggesting that hyaluronan depolymerization during inflammatory responses could be directly involved in the induction of mucus hypersecretion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential regulation of hyaluronan-induced IL-8 and IP-10 in airway epithelial cells.

Airway epithelium is emerging as a regulator of local inflammation and immune responses. However, the cellular and molecular mechanisms responsible for the immune modulation by these cells have yet to be fully elucidated. At the cellular level, the hallmarks of airway inflammation are mucus gland hypertrophy with excess mucus production, accumulation of inflammatory mediators, inflammation in t...

متن کامل

Oligosaccharides of hyaluronan are potent activators of dendritic cells.

The extracellular matrix component hyaluronan (HA) exists physiologically as a high m.w. polymer but is cleaved at sites of inflammation, where it will be contacted by dendritic cells (DC). To determine the effects of HA on DC, HA fragments of different size were established. Only small HA fragments of tetra- and hexasaccharide size (sHA), but not of intermediate size (m.w. 80, 000-200,000) or ...

متن کامل

Epidermal growth factor receptor activation by epidermal growth factor mediates oxidant-induced goblet cell metaplasia in human airway epithelium.

Mucus overproduction in inflammatory and obstructive airway diseases is associated with goblet cell (GC) metaplasia in airways. Although the mechanisms involved in GC metaplasia and mucus hypersecretion are not completely understood, association with oxidative stress and epidermal growth factor receptor (EGFR) signaling has been reported. To explore the mechanisms involved in oxidative stress-i...

متن کامل

Characterization of human mucin 5B gene expression in airway epithelium and the genomic clone of the amino-terminal and 5'-flanking region.

Human mucin (MUC) 5B gene expression in human airway epithelium was studied in both tissue sections and cultures of tracheobronchial epithelial (TBE) cells. In situ hybridization demonstrated that MUC5B message was expressed mainly in the mucous cells of submucosal glands of normal human airway tissues. Nevertheless, an elevated MUC5B message level could be seen in surface goblet cells from pat...

متن کامل

CD44 attenuates metastatic invasion during breast cancer progression.

Metastatic invasion is the primary cause of breast cancer mortality, and adhesion receptors, such as CD44, are believed to be critical in this process. Historically, primary breast tumor epithelium has been investigated in isolation from other tissue components, leading to the common interpretation that CD44 and its primary ligand, hyaluronan, promote invasion. Here, we provide in vivo evidence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of respiratory cell and molecular biology

دوره 40 3  شماره 

صفحات  -

تاریخ انتشار 2009